您身边的文档专家,晒文网欢迎您!
当前位置:首页 > > 综合 > 正文

何为低耗电、超高速的无线技术“UWB”?网络知识3篇(超高速网络概念)

2022-10-12 18:03:00综合

何为低耗电、超高速的无线技术“UWB”?网络知识3篇(超高速网络概念)

  下面是范文网小编整理的何为低耗电、超高速的无线技术“UWB”?网络知识3篇(超高速网络概念),供大家参阅。

何为低耗电、超高速的无线技术“UWB”?网络知识3篇(超高速网络概念)

何为低耗电、超高速的无线技术“UWB”?网络知识1

  作者:叶卓映 耿国桐 吴伟陵 近来, MI MO无线系统以其在容量和 性能 上的巨大潜能吸引了广大研究人员的关注, 本文对MIMO无线系统这一热点问题进行概述。首先介绍MIMO无线链接巨大潜能的背景、原理以及实现MIMO优点的各种技术和算法。然后介绍了MIMO在3G中

  作者:叶卓映?耿国桐?吴伟陵

  近来,MIMO无线系统以其在容量和性能上的巨大潜能吸引了广大研究人员的关注。

  本文对MIMO无线系统这一热点问题进行概述。首先介绍MIMO无线链接巨大潜能的背景、原理以及实现MIMO优点的各种技术和算法。然后介绍了MIMO在3G中应用的问题。

  关键词MIMO空间复用空时编码

  近来,多入多出(MIMO)数字通信作为现代通信一个最重要的技术突破吸引了广大研究人员的关注。在解决未来无线网络密集型业务容量瓶颈的新近技术中,MIMO技术显得非常突出。其实,在发明MIMO技术后的几年后,这项技术就有向标准驱动的无线网络产品大规模渗透的势头,例如宽带无线接入系统、无线局域网、3G等等。

  本文对MIMO这一新的无线通信系统进行概述。介绍了MIMO无线链接巨大潜能的背景、原理、实现MIMO优点的各种技术和算法及MIMO在3G中应用的问题。

  1?MIM0系统的原理

  MIMO的定义非常简单。移动通信中的MIMO技术指的是利用多根发射天线和多根接收天线进行无线传输的技术,使用这种技术的无线通信系统即为MIMO系统。当天线相互之间有足够远的距离,各根发射天线到各根接收天线之间的信号传输可以看成是相互独立的,所采用的多根天线可以称为分立式多天线,如应用于空间分集的多根天线就是这种情况。如果各根天线相互之间很近,各根发射天线到各根接收天线之间的信号传输可以看成是相关的,所采用的多根天线称为集中式多天线,如智能天线中的天线阵列。在一般的智能天线技术中,只有发信机或者收信机配备多根天线,较为典型的是基站配备多根天线,因为一般认为在基站比移动电话更能承担额外的成本和空间。传统上,智能天线的智能性体现在权重选择算法而不是编码上,基于分立式天线空时码的研究正在改变这个观点。本文讨论的MIMO技术特指基于分立式天线的MIMO技术。

  MIMO的思想是把收发端天线的信号进行合并,以改进每个MIMO用户的通信质量和速率。运营商可以利用这个优点极大地提高网络的服务质量以增加收入。传统上认为多径传播是无线传输的一个缺陷,而MIMO系统的主要特征就是把多径传播转变成为对用户有利的因素。MIMO有效地利用随机衰落来提高传输速率。因此,MIMO成功的主要原因是,MIMO可以极大地提高无线通信性能,不需要以频谱为代价。MIMO技术还促使了其它很多领域的进步,如信道建模、信息论和编码、信号处理、天线设计、固定网和移动网的多天线蜂窝设计。

  1.1MIMO系统的具体模型

  数字信源以二进制数据流形式进入一个发射模块,这个模块包括错误控制编码功能和映射复调制符号功能。映射功能产生几个单独的符号流,这几个符号流之间可以是独立的、部分冗余的或完全冗余,

  每个符号流映射到其中一根发射天线上。映射可能会包括天线元的线性空间加权或者线性天线空时预编码。经过上频转换、滤波和放大,信号发射到无线信道。接收端使用多根天线捕获信号。为了恢复消息,进行解调和去映射操作。在选择编码和天线映射算法时,智能层次、复杂度和先验信道信息认识有很大的不同,这依赖于具体应用。

  1.2实现MIMO优点的各种技术和算法

  贝尔实验室最早提出了基于空间复用的分层空时码技术,它可在中高信噪比下实现最高达30b/s/Hz的传输效率。Tarokh提出了空时格码技术,它把编码调制与分集综合考虑,提出了构造准静态瑞利衰落信道下满分集增益和高编码增益的系列准则。为了减少接收端复杂度,Tarokh等又提出了空时分组码技术。空时分组码技术在发送端对几个连续发送符号作简单的正交编码,接收端只要采用线性合并就可以获得最大似然译码,实现最大的发送分集增益。以上提到的几种技术各有优缺点。

  2?3G中的MIMO应用

  目前,对MIMO技术的研究工作已经进入了一个相对成熟的阶段。3G中MIMO方案的标准化工作已经开始,主要是在国际电信联盟和3GPP的论坛上进行。对MIMO进行补充的许多技术用来改进吞吐量、性能和频谱效率,正引起研究人员的高度重视,特别是那些对3G增强的技术,例如高速数字分组接入(HSDPA)、自适应调制与编码、混合ARQ等等。但至今为止,MIMO在蜂窝系统中还很少商业实现。除了多人单出的纯发分集方案,目前3G还没有采用任何的MIMO方案。下面讨论影响MIMO系统大规模商业化的两个主要因素。

  第一个因素是天线问题。在MIMO的系统设计中,天线的数目和间距是很重要的系统参数。具有多天线的基站更多地关注环境,因此,天线元的数目被限制在恰当的数目,比如说四根天线。而对于终端而言,1/2波长间距足够保证非相关衰落。可以设想终端天线的最大数为四根,当然,两根天线实现的可能性更大。间距参数对于实现MIMO的高频谱效率尤其重要。然而,对于手机而言,安装两根天线可能是个问题。这是因为目前手机设计的趋势是把天线放入盖子里以改进外表的吸引力,这就使得间隔的要求近乎苛刻。

  第二个因素是接收机复杂度的问题。首先,接收机中对MIMO信道的估计使得复杂度增加。另外,复杂度还来自特别的RF、硬件和接收机高级分离算法。MIMO接收机应该是双模的,以支持非MIMO模式。在MIMO模式时,接收机的每根天线使用一个RF链路,另外还要有附加的基带操作,即用来消除空间干扰的空时合并器和检测器。这些附加需求使得四发四收MIMO系统的复杂度大约是单天线接收机的两倍。由于MIMO接收机环境的时延扩展带来的不同信道条件可能还需要均衡和干扰消除的处理,可能会进一步加大接收机的复杂度。

  3?结束语

  本文回顾了用于未来无线网络的MIMO技术的原理及其在3G中的应用。信息论表明MIMO的实现可以带来巨大的容量和性能增益。在实际中是完全还是部分获得容量和性能增益依赖于收发信号处理算法的合理设计。另外,要让MIMO算法成功用于商业标准依赖于在速率最大化和分集方案之间很好的折衷。还有,MIMO的成功还需要对更多更具体的MIMO信道进行良好的建模。

  原文转自: 任治刚 综述软件无线电的起源、概念及特点,详细介绍它的基本结构及部分实现技术, 关键词:软件无线电智能天线数字信号处理器数字变频 一、软件无线电的起源 软件无线电(SoftwareRadio)最初起源于军事通信。 军用电台一般是根据某种特定用途设

  作者:宋丽丽?任治刚

  综述软件无线电的起源、概念及特点,详细介绍它的基本结构及部分实现技术。

  关键词:软件无线电智能天线数字信号处理器数字变频

  一、软件无线电的起源

  软件无线电(SoftwareRadio)最初起源于军事通信。

  军用电台一般是根据某种特定用途设计的,功能单一。虽然有些电台基本结构相似,但其信号特点差异很大,例如工作频段、调制方式、波形结构、通信协议、编码方式或加密方式不同。这些差异极大地限制了不同电台之间的互通性,给协同作战带来困难。同样,民用通信也存在互通性问题,如现有移动通信系统的制式、频率各不相同,不能互通和兼容,给人们从事跨国经商、旅游等活动带来极大不便。为解决无线通信的互通性问题,各国军方进行了积极探索。1992年5月,在美国电信系统会议。IEEENationalTelesystemsConference)上,MITRE公司的JoeMitola首次明确提出软件无线电的概念。

  二、软件无线电概念及特点

  所谓软件无线电,就是说其通路的调制波形是由软件确定的,即软件无线电是一种用软件实现物理层连接的无线通信设计。软件无线电的核心是将宽带A/D、D/A尽可能靠近天线,用软件实现尽可能多的无线电功能;其中心思想是在一个标准化、模块化的通用硬件平台上,通过软件编程,实现一种具有多通路、多层次和多模式无线通信功能的开放式体系结构。应用软件无线电技术,一个移动终端可以在不同系统和平台间畅通无阻地使用。

  软件无线电的主要优点是它的灵活性,可以通过增加软件模块,方便地增加新功能。在软件无线电中,诸如信道带宽、调制及编码等都可以进行动态调整,以适应网络标准和环境、网络通信负荷及用户需求的变化。软件无线电具有较强的开放性,由于采用标准化、模块化结构,其硬件可以随器件和技术的发展而更新或扩展,软件也可以随需要不断升级。

  软件无线电推动了可编程硬件的发展,扩展了它的编程能力,提高了它的灵活性。现在的无线通信设备包括手机都使用了DSP,但DSP软件大多固化在设备中,且DSP硬件是专用的。如果DSP硬件更加通用化,其软件可以通过有线或无线手段装入,那么一台设备就可以实现在不同的制式、频段和协议下工作了。当用户携带一台软件无线电装置到另一个国家,一入境就可以使用软件无线电装置从空中接收并下载该地区的通信标准,然后就可以利用该地区通信标准运行自己的软件无线电装置了,这将给人们带来很大的方便。

  三、软件无线电的基本结构

  1.宽带/多频段天线与RF模块

  宽带/多频段天线与RF模块是软件无线电不可替代的硬件出入口。软件无线电要求天线能覆盖所有频段,能用程序控制方法对其功能及参数进行设置。可采用智能化天线技术。

  智能天线也称自适应阵列天线,由天线阵、波束形成网络、波束形成算法三部分组成。它通过满足某种准则算法调节各阵元信号的加权幅度和相位,进而调节天线阵列的方向图形状,来达到增强所需信号,抑制干扰信号的目的。智能天线也可以用空分复用(SDMA)的概念加以解释,即利用信号入射方向上的差别,将同频率、同时隙的信号区分开来,从而达到成倍扩展通信系统容量的目的,

  智能天线具有抑制噪声、自动跟踪信号、采用智能化时空处理算法形成数字波束等功能。目前,智能天线技术日趋完善,中国电信科学研究院信威公司已推出带智能天线的同步CDMA系统,美国麦得威通信公司的智能天线也开始投放市场。

  射频部分包括预放大和功率输出两部分。射频发射机和接收机,由通用平台和多个射频发射机模块组成,其工作频带应足够宽,并采用数字频率合成技术设置,对每种标准应能够多载波工作。发射机包括多只高功率放大器,要求具有高线性。

  2.模数转换部分

  数字化是软件无线电的基础,模拟信号必须经过采样转化成数字信号才能用软件进行处理。软件无线电体系结构的一个重要特点是将A/D和D/A尽量靠近射频前段。A/D和D/A器件在软件无线电中的位置非常关键,它直接反映了软件无线电系统的软件化可操作程度。为减少模拟环节及适应错综复杂的电磁环境,要求A/D器件具有适中的采样频率、较高的工作速度、较宽的工作带宽和较大的动态范围。在设计无线电系统时,选择模数器件依据的性能指标有:信噪比、转换灵敏度、无散杂动态范围、非线性误差、互调失真、全功率模拟输入带宽等。

  A/D器件性能的局限及采样时引入的频谱混迭、量化误差等,会对软件无线电台的性能产生不良影响,但这种影响尚缺乏定量分析。

  3.高速数字信号处理器

  DSP是软件无线电必需的基本器件,是其灵魂和核心所在。系统在射频或中频(IF)对接收信号进行数字化处理,通过软件编程灵活地实现宽带数字滤波、直接数字频率合成、数字上下变频、调制解调、差错编码、信令控制、信源编码及加解密功能。接收时,来自天线的信号经过RF处理和变换,由宽带A/D数字化,然后通过可编程DSP模块进行所需的各种信号处理,处理后的数据信号送至多功能用户终端。发送时,通过类似接收信号处理流程的逆过程将数据通过天线发射出去。可见,软件无线电的灵活性、开放性、兼容性等特点主要是通过以数字信号处理为中心的通用硬件平台及DSP软件实现的。

  目前的DSP无论在功能上还是在性能上,都不能满足无线电的要求,很难用单片DSP直接处理宽带射频或中频信号,可以先采用数字变频技术对宽带射频或中频信号进行处理,然后再用DSP完成各种信号处理功能。数字变频的组成与模拟变频组成类似,包括数字混频器、数字控制振荡器和低通滤波器三部分,所不同的是数字变频采用正交混频。数字变频具有载频和数字滤波器系数可编程性、不存在非线性失真、频响特性好及造价低等优点。

  四、软件无线电的未来

  由于软件无线电具有现有无线通信体制所不具备的许多优点,因此它有着广泛的应用前景。目前,软件无线电在国内外得到迅速发展。美国国防部已完成“Speakeasy计划”二期工程,并在电子战领域应用;欧共体的ACTSFIRST项目和美国RUTGERS大学分别进行了软件无线电应用于第三代移动通信系统的研究;我国也将软件无线电技术纳入了国家“863”高科技发展计划,目前我国正在研究开发的第二代同步轨道航天测控设备方案的核心就是引入软件无线电技术。

  随着无线网络的发展,各种无线通信体系结构和设计规范不断出现。未来的无缝多模式网络要求无线电终端和基站具有灵活的RF频段、信道接入模式、数据速率和应用功能。软件无线电可以通过灵活的应变能力,提高业务质量;同时可以简化硬件组成,快速适应新出现的标准和管理方式。

  可以预见,随着现代计算机软、硬件技术与微电子技术迅猛的发展,软件无线电技术必将在21世纪得到更快、更完善的发展,并付诸应用。

  原文转自: Shape Modulation)做出了初步的理论探讨。

  关键词:超宽带(UWB) 脉形调制(PSM) 正交改进型hermite脉冲

  超宽带(Ultra Wide Band)作为一种新型的无线通信技术与传统的通信方式相比有着很大的区别。由于它不需使用载波电路,而是通过发送纳秒级脉冲传输数据,因此该技术具有发射和接收电路简单、功耗低、对现存通信系统影响小、传输速率高的优点,此外它还具有多径分辨能力强、穿透力强、隐蔽性好、系统容量大、定位精度高等优势。根据FCC的规定,从3.1GHz~10.6GHz之间的7.5GHz带宽频率都将作为UWB通信设备所使用。但出于对现存无线系统影响的考虑,UWB的发射功率被限制在1mW/MHz以下。

  UWB是一种可以为无线局域网LAN、个人域网PAN的接口卡和接入技术带来低功耗、高带宽并且相对简单的无线通信技术。它解决了困扰传统无线技术多年的重大难题,开发了一个具有对信道衰落特性不敏感、发射信号功率普密度低、不易被截获、复杂度不高等众多优点的传输技术。该技术尤其适用于室内等密集多径场所的高速无线接入和军事通信应用中。

  图1

  1 基本概念

  超宽带(UWB)又被称为脉冲无线电(Impulse Radio),具体定义为相对带宽(信号带宽与中心频率的'比)大于25%的信号,即:

  Bf=B/fc=(fh-fl)/[(fh+fl)/2]>25% (1)

  或者是带宽超过1.5GHz。实际上UWB信号是一种持续时间极短、带宽很宽的短时脉冲。它的主要形式是超短基带脉冲,宽度一般在0.1~20ns,脉冲间隔为2~5000ns,精度可控,频谱为50MHz~10GHz,频带大于100%中心频率,典型点空比为0.1%。

  传统的UWB系统使用一种被称为“单周期(monocycle)脉形”的脉冲。一般情况下,通过随道二极管或者水银开关产生。在计算机仿真中用高斯脉冲来近似代替它。由于天线对脉冲的影响不同,所以可以假设发送脉冲为:

  而接收端收到的信号为:

  tc是脉冲的时移,2tau为脉冲的宽度。图1给出了发射脉冲和接收脉冲的时域脉形。

  2 UWB的性能特点

  超宽带有别于其它现存的一些通信技

[1]?[2]?[3]?[4]?[5]

何为低耗电、超高速的无线技术“UWB”?网络知识2

  无线UWB技术,是无线技术大家族中的另类,它的独特之处,成为军事研究的重点对象。但,时日至今,对于普通的业务领域,它也有着广阔的应用前景。那么,本文就对无线UWB技术进行一下介绍。

  无线UWB技术简介

  无线UWB技术是一种与其它技术有很大不同的无线通信技术,它将会为无线局域网LAN和个人域网PAN的接口卡和接入技术带来低功耗、高带宽并且相对简单的无线通信技术。超宽带技术解决了困扰传统无线技术多年的有关传播方面的重大难题,它开发了一个具有对信道衰落不敏感;发射信号功率谱密度低,有低截获能力,系统复杂度低,能提供数厘米的定位精度等优点。无线UWB技术尤其适用于室内等密集多径场所的高速无线接入和军事通信应用中。

  虽然超宽带的描述并不详细,它确实有助于将这项技术与传统的“窄带”系统分隔开,或者是更新的主要是指文献中描述的未来3G蜂窝技术的“宽带”系统。关于超宽带和其它的“窄带”或者是“宽带”主要有两方面的区别。一是超宽带的带宽,在美国联邦通信委员会(FCC)所定义比中心频率高25%或者是大于1.5G赫兹。很清楚,这一带宽明显大于目前所有通信技术的带宽。二是,超宽带典型的用于无载波应用方式。传统的“窄带”和“宽带”都是采用无线电频率(RF)载波来传送信号,频率范围从基带到系统被允许使用的实际载波频率。相反的,超宽带的实现方式是能够直接的调制一个大的激增和下降时间的“脉冲”,这样所产生的波形占据了几个GHz的带宽。

  无线UWB技术与现有的无线通信技术有着本质的区别。当前的无线通信技术所使用的通信载波是连续的电波,形象地说,这种电波就像是一个人拿着水管浇灌草坪时,水管中的水随着人手的上下移动形成的连续的水流波动,

  几乎所有的无线通信包括移动电话、无线局域网的通信都是这样的:用某种调制方式将信号加载在连续的电波上。

  与此相比,无线UWB技术就像是一个人用旋转的喷洒器来浇灌草坪一样,它可以喷射出更多、更快的短促水流脉冲。无线UWB技术的产品在工作时可以发送出大量的非常短、非常快的能量脉冲。这些脉冲都是经过精确计时的,每个只有几个毫微秒长,脉冲可以覆盖非常广泛的区域。脉冲的发送时间是根据一种复杂的编码而改变的,脉冲本身可以代表数字通信中的0,也可以代表1。

  超宽带技术在无线通讯方面的创新性、利益性具有很大的潜力,在商业多媒体设备、家庭和个人网络方面极大地提高了一般消费者和专业人员的适应性和满意度。所以一些有眼光的工业界人士都在全力建立超宽带技术及其产品。相信这一超宽带技术,不仅为低端用户所喜爱,而且在一些高端技术领域,如雷达跟踪、精确定位和无线通信方面具有广阔的前景。

  从时域上讲,超宽带系统有别于传统的通信系统。一般的通信系统是通过发送射频载波进行信号调制,而无线UWB技术是利用起、落点的时域脉冲(几十ns)直接实现调制,超宽带的传输把调制信息过程放在一个非常宽的频带上进行,而且以这一过程中所持续的时间,来决定带宽所占据的频率范围。由于UWB发射功率受限,进而限制了其传输距离,据资料表明,UWB信号的有效传输距离在10m以内,故而在民用方面,无线UWB技术普遍地定位于个人局域网范畴。

  从频域来看,超宽带有别于传统的窄带和宽带,它的频带更宽。窄带是指相对带宽(信号带宽与中心频率之比)小于1%,相对带宽在1%到25%之间的被称为宽带,相对带宽大于25%,而且中心频率大于500MHz的被称为超宽带。

何为低耗电、超高速的无线技术“UWB”?网络知识3

  集崭新的超宽带(UWB)无线通信技术

摘要:从超宽带UWB技术进行了介绍和分析,并对其调制方式和近期提出的新型高效脉形调制PSM(PulseShapeModulation)做出了初步的理论探讨。

  关键词:超宽带(UWB)脉形调制(PSM)正交改进型hermite脉冲

  超宽带(UltraWideBand)作为一种新型的无线通信技术与传统的通信方式相比有着很大的区别。由于它不需使用载波电路,而是通过发送纳秒级脉冲传输数据,因此该技术具有发射和接收电路简单、功耗低、对现存通信系统影响小、传输速率高的优点,此外它还具有多径分辨能力强、穿透力强、隐蔽性好、系统容量大、定位精度高等优势。根据FCC的规定,从3.1GHz~10.6GHz之间的7.5GHz带宽频率都将作为UWB通信设备所使用。但出于对现存无线系统影响的考虑,UWB的发射功率被限制在1mW/MHz以下。

  UWB是一种可以为无线局域网LAN、个人域网PAN的接口卡和接入技术带来低功耗、高带宽并且相对简单的无线通信技术。它解决了困扰传统无线技术多年的重大难题,开发了一个具有对信道衰落特性不敏感、发射信号功率普密度低、不易被截获、复杂度不高等众多优点的传输技术。该技术尤其适用于室内等密集多径场所的高速无线接入和军事通信应用中。

  图1

  1基本概念

  超宽带(UWB)又被称为脉冲无线电(ImpulseRadio),具体定义为相对带宽(信号带宽与中心频率的比)大于25%的信号,即:

  Bf=B/fc=(fh-fl)/[(fh+fl)/2]>25%(1)

  或者是带宽超过1.5GHz。实际上UWB信号是一种持续时间极短、带宽很宽的短时脉冲。它的主要形式是超短基带脉冲,宽度一般在0.1~20ns,脉冲间隔为2~5000ns,精度可控,频谱为50MHz~10GHz,频带大于100%中心频率,典型点空比为0.1%。

  传统的UWB系统使用一种被称为“单周期(monocycle)脉形”的脉冲。一般情况下,通过随道二极管或者水银开关产生。在计算机仿真中用高斯脉冲来近似代替它。由于天线对脉冲的影响不同,所以可以假设发送脉冲为:

  而接收端收到的信号为:

  tc是脉冲的时移,2tau为脉冲的宽度。图1给出了发射脉冲和接收脉冲的时域脉形。

  2UWB的性能特点

  超宽带有别于其它现存的一些通信技术,其最根本的区别在于无需载波,大大降低了发射和接收设备的复杂性,从根本上降低了通信的成本。

  UWB的优点可以归纳为以下八个方面:

(1)无需载波,发送和接收设备简单。由于UWB信号是一些超短时的脉冲,其频率很高,所以它不象传统的基带信号那样需要将其调制到某个发射频率上才能在信道中传输。因此,必然会使发射机和接收机的结构简单化。

  图2

(2)功耗低。由于UWB信号无需载波,工作在频谱的电子噪声波段,所以它只需要很低的电源功率。一般UWB系统只需要50~70mW的电源,而这只是移动电话的百分之一,蓝牙技术的十分之一。

(3)传输速率高。极宽的带宽使UWB具有很高的传输速率,一般情况下,其最大数据传输速度可以达到几百Mbps~1Gbps。美国英特尔公司于2002年4月在“IDF2002SpringJapan”上对该技术进行了演示,在数米的距离内传输速率可达100Mbps。

(4)隐蔽性好,安全性高。由于UWB信号的带宽很宽,且发射功率很低,这必然使该项通信技术具有低截获能力LPD(LowProbabilityofDetection)的优点。另外超宽带还采用了跳时TH(TimeHopping)扩频技术,接收端必须在知道发射端扩频码的条件下才能解调出发送的数据信息。

(5)多径分辨能力强。从时域角度看,超宽带系统采用脉冲宽度为几纳秒的窄信号,因此具有很高的时间分辨力,相应的多径分辨率小于几十厘米;从频域的角度分析,由于UWB信号的带宽极宽,所以信号在传输过程中出现频率选择性衰落出现是一定的。然而正是因为极宽的带宽,多径衰落只在某些频点处出现,从整体上考虑,衰落掉的能量只是信号总能量很小的部分,所以该技术在抗多径方面仍具有鲁棒性。

(6

)系统容量大。香农公式给出

  C=Blog2(1+S/N)(4)

  可以看出,带宽增加使信道容量的升高远远大于信号功率上升所带来的效应,这一点也正是提出超宽带技术的理论机理。

(7)高精度的距离分辨力。由于超宽带定位设备的时间抖动小于20ps,如果采用GPS相同的工作原理和算法,相应的距离不确定性小于1cm。而在实际应用中,超宽带雷达系统使用的超窄脉冲信号,其距离分辨率小于30cm。

(8)穿透能力强。在具有相同带宽的无线信号中,超宽带的频率最低,因此,它在具有大容量和高距离分辨率的同时相对于毫米波信号具有更强的穿透能力。

  3UWB信号的调制方式

  UWB的调制方式有许多,以脉冲调制PPM(PulsePositionModulation)为例作为一个举例分析。

  首先定义一个单周期脉形:

  s(k)代表信号kth,w(t)为传输的单周期脉冲。

  将其移至每一帧的开始:

  tf代表脉冲重复周期,j表示第j个单脉冲。

  加入伪随机跳时码:

  最后加入调制数据:

  其中,d(k)是信息数据,δ为时移。为了满足多用户的需求,提高通信的安全性和对系统功率谱密度PSD(PowerSpectralDensity)的考虑,引入了跳时码,下面就从功率谱密度的角度来分析这个问题。

  假设采用图1(a)给出的高斯单脉冲作为发送信号,且只是一串周期性的脉冲序列,由于时域信号的`周期性导致其频域出现了强烈的能量类峰,这些类峰将对现存传统的无线信号造成干扰。因此需要采取某种措施将其平滑。如果采用PPM调制对脉冲的位置做出调整,可以看到:由于调制的置乱效果,频域的尖峰得到了一定的控制,但此时仍比较明显。为了进一步降低类峰的幅度,引入跳时码,这样发送信号的功率谱就会得到进一步的平滑,几乎近似于背景噪声,这也正是UWB系统能与现存无线系统并存的原因之一。图2给出了上述不同信号的PSD图和引入跳时码后的时域波形。

  除PPM外,UWB信号还可以采用脉幅调制PAM(PulseAmplitudeModulation),开关键OOK(On-OffKey)和二相移键控BPSK(Bi-PhaseShiftKey)等。在接收端,单脉冲信号可以通过相关技术实现可靠接收。实际应用中常使用相关器(correlator),它用准备好的模板波形乘以接收到的射频信号,再积分就得到一个直流输出电压。相关器输出的是接收到的单周期脉冲和模板波形的相对时间位置差,从输出中寻找时间位置差为0的即为要接收的信号。

  为了追求更高效率的信息传输,近来人们提出了一种新型脉冲调制方式――脉形调制PSM(PulseShapeModulation)。PSM就是对脉冲的形状进行调制从而实现信息的载荷,因此脉冲形状的选择是十分重要的。它的提出得益于人们对hermite多项式的研究。由于hermite多项式的数学表达式与高斯单脉冲很接近,而且随着阶数的变化,波形的持续时间不会有很大的变化,因此人们便想到了用hermite多项式数的变化产生形状各异的脉冲,实现多元化的调制。为了寻求正交的波形,需对hermite多项式进行修正,即:

  经过改动之后,便可以得到彼此正交的各阶hermite多项式了。这时可以在发送端同时发送n个不同形状的单脉冲,正交性使其互不干扰,接收端用相关接收技术即可把每一个信号分离出来。

  图3给出了改进型hermite多项式时域波形。与此同时还可以通过搭建simulink电路得到想要的各阶hermite多项式脉冲。如图4给出了搭建电路和仿真波形。在simulink电路中,Hermite多项式的阶数由脉冲阶数单元控制,示波器1、2给出相应阶数和相应阶数减1阶的hermite脉形。

  传输效率的提高带来系统性能的下降,这是许多系统所不能容忍的,因此需要进行编码。首先在形域采用BCH(7,4)对信号编码,这样一来传输速率是单脉冲的4倍,而误码性能则与单脉冲基本相同,随后在时域对信息帧进行BCH(31,11)编码,使性能进一步提高,最后还可以在时域和形域联合编码,误码性能会得到大幅度的改善,而传输效率仍然高于单脉冲系统。性能曲线如图5所示。

  4应用前景和发展方向

  凭借自身的众多优势,超宽带技术具有广阔的应用前景,UWB首先在美国军方和政府部门得到了实质性关注,并迅速应用于美国军队的无线电台组网(Adhoc)和高精度雷达检测系统中。2002年2月FCC准许UWB技术进入民用领域,条件是:“在发送功率低于美国放射噪音规定值-41.3dBm/MHz(换算成功率则为1mW/MHz)的条件下,可将3.1G~10.6GHz的频带用于对地下和隔墙之物进行扫描的成像系统、汽车防撞雷达以及在家电终端和便携式终端间进行测距和无线数据通信”。尽管该技术在应用中有如此多的限制,但它仍受到广大电信开发商的青睐。TimeDomain和MultispectralSolutions等公司已经向IEEE-802.15委员会提出了采用超宽带技术的议案,众多公司的研究部门乃至学校也都将该技术的研究提到了日程中来。许多现已成熟的技术纷纷与UWB进行结合,如UWB-OFDM、UWB-Adhoc、UWB-Wavelet、UWB-Neuralnetwork等,有的公司甚至已经利用这些技术生产出了实际的民用产品。

  图4

  笔者把超宽带技术的应用归纳为短距离无线通信、雷达探测和精确定位三个最主要的方面。其中在短距离无线通信中可用于密文传送、音/视频流传输、射频标签识别以及无中心自纺织网络(Adhoc)的物理层等领域;雷达方面主要用作防撞雷达检测、精密测高学、穿墙成像和探地雷达系统;精确定位则可用于资源跟踪和全球定位系统GPS(GlobalPositionSystem)。由此可见,UWB技术的背后蕴藏着巨大的商机。

  当然,超宽带技术若要真正用于人们的日常生活,还有许多极具挑战性的课题,这也是超宽带技术近来乃至今后很长一段时间内研究和发展的方向。

(1)建立时域内的超宽带无线电发射器的模型,从时域角度设计天线的传输函数;

(2)研究超宽带信号产生和基本功能的优化;

(3)研究低电平赶宽带无线电信号集合而千万的干扰,有效平衡功率和通信范围的关系;

(4)超宽带跳时码的研究;

(5)研究移动Adhoc网络协议和路由协议,将超宽带技术应用于分布式的网络结构、盲捕获和自配置功能中;研究适用于超宽带类似于“蓝牙”系统的组网协议;

(6)研究基于超宽带无线电传输技术的无线IP协议;

(7)研究超宽带无线电的测试技术,包括传输信道的测试、估计、信道模型等。

  如今科学界正掀起一般UWB的革命浪潮,UWB技术已成为未来最有发展前景的十大通信技术之一。我国同样也非常重视这项革命性技术的研究,并于2001年9月初发布的“十五”863计划通信技术主题研究项目中,把超宽带无线通信关键技术及其共存与兼容技术作为无线通信共性技术与创新技术的研究内容,鼓励国内学者加强这方面的研发工作。

  超宽带技术开创出无线通信中一个崭新的领域,拥有十分广阔的市场前景。或许假以时日,UWB将作为无线互连标准的主流出现在人们面前,让我们拭目以待。

相关热搜